From the Principles of General Quantum Field
Theory towards a New Dynamical Intuition
from Model Studies

The work of J.A. Swieca within two decades
of developments in Quantum Field Theory

(revised and expanded version}

INTRODUCTION

The scientific work of J.A.Swicca & constitutes a fasclina-
ting bridge between the thomugh investigations of the general princi-
ples of Quantum Field Theory carried out in the late 50's and ecarly
60's, and the more recent ottempts to understand the dynamical subt-

leties of the relation between particles and fields.

In order to recapture the motivalions of a young Lheoretician
who entered active rescarch at the beginning of the 60's, it is help-
ful to start with a panoramic view of Quantum Field Theory in thosec

days.

Several yecars after the impressive success of perturbative
renormalization theory in Quantum Electroedynamics, physicists started
to guestion the adequacy of the Lagrangian approach for other interac-
ttons, in particular strong intcractions. The first step taken was to
liberate the principles underlying the Lagrangian approach from their
perturbation wrapping. These ottempts culminated later on in the fra-
meworks of Wightman' and Haag® and that of Lehmann, Symanzik and Zim-
mermann?, In the first one, emphasis was placed on vacuum expectation
values of field {(or local observables) and tncir propertics, whereas
in the LSZ theory the cornerstone was the asymptotic condition for

"interpolating" fields, thus relating fields with particles. Some

+ On leave of absence from the Frecic Universitdt, Berlin

++ deceased on Dec. 22nd, 1980.



years later, Haag“ and Ruelle® as well as Hepps demonstrated that if
there are no zero-mass particles in the spectrum, the LSZ asymptotic
properties {without asymptotic completeness) can actually be derived
from the locality properties of fields, In addition to general struc-
tuyral theorems, as TCP, Spin and Statistics and generalizations in-
volving internal symmetries, this framework of General Quantum Field
Theory furnished the foundation of Dispersion Relations, The distrust
and, to a certain degree, misunderstanding of QFT among some physicists
was 50 great that attempts were made to separate the 'Dispersion Ap-
proach' to elementary particte physlcs under the heading of '"S-Hatrix
Bootstrap' from the ''contaminated* Field Theory. Ewven though those
ideas are almost forgotten, they played a certain role in the 6€0's and
sometimes even led to useful observations which were later on incorpo

rated into the mainstream of QFT,

Only at the end of the 60's, it becomes abundantly clear that

the short distance singularities of QFT, far from threatening the ma-

thematical existence of the theory, were actually necessary for its
internal consistency; renormalization theory became synonymous with
the study of short-distance properties. The results of Wilson’ and

other physicistsu played an important role in regaining confidence,
not only in the general principles, but even in the Lagrangian approach

which thus recached a new level of sophistication,

These remarks furnish the background for understanding the
motivation behind part of Swieca's work, the part which [ will present
under the heading of "Structural Theorems in QFT", These results are

largely Independent of Lagrangian models.

In order to appreciate the other part of his work which 1
propose to discuss under the heading '"Model Studies as a Laboratory
for Developing and Testlng New Dinamical ldcas", it may be helpful to
point out that during the 70's the emphasis in QFT changed from short
-distances towards properties of physical states, The driving motor
for this was the pressing need, especially posed by non-abelian gauge
theories, for understanding the relation of Lagrangian fields to the
physical spectrum in a more profound way. After the renormalization
properties? {Including the observation of asymptotic freedom'®} were
clarified, notably by 't Hooft, many physicists concentrated their at

tention to the vacuum and particle properties of those gauge models.

In this context, it seems remarkable to me that, by pressing

the internal logic of a two-dimensional gauge model ', André Swiecca



together with John Lowenstein were able to capture some aspects of
many of the modern concepts as B-vacua, the U(1)-problem, charge neu-
trality and confinement, long before such cxpressions were c¢oined,.
This 1lne of research was later on refined in a series of papers dea-

s , . \ 12 ) i
ling with the functional integral approach ; the issue of ''screening
versus confinement"'? and the UL{1) problem in a solvable mode] with

mass transmutation and its relation to fractional winding'®. I will

have to say something on this work in the second part.

Being convinced that the study of models do furnisha useful
laboratory for new dynamical ideas, André enjoyed thoroughly the dis-
covery of a certain class of nontrivial two-dimensional models whose
S-matrix and Form-factcers became computable. He reallized that the ap-
pearance of exotic statistics'® in some of these models is a manifes-
tation of the order - disorder duality of Statistical Mechanics, of
which lattice model studies were first performed by Kadanoff and col-

laborators'®,

in the last year of his life, he was particularly interes-
ted in understanding the rather subtle renormalization aspects of
kinks and disorder fields in the euclidean functional integration ap-

proach.

I. STRUCTURAL THEOREMS IN QFT

At the beginning of the 60's, Nambu and Goldstone discove-
red that spontaneously broken symmetrics in theories of short - range
{local Lagrangian) interactions are always accompanied by thc appea-

rance of zero-mass bosons.,

Symmetries in QFT in those days were discussed in complete
analogy to symmetries in classical field theories, The starting point
was & Lagrangian

o 9.4,) (1)

leading, via the principle of minimal action, to the Euler-Lagrange

equation:

3 3L _ 3L _ (2)
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The invariance of the Lagrangian {1) under a WN=paramctric



invariance group ¢ (for simplicity we restrict our attention to linear

realizations, 1,e, matrix groups):

by — V?:J. (Al...xﬂ)% R (3)
with generators:
dv -
LA = I
crol P . (4)

leads to Euler-Lagrange equations invariant under &, and to ¥ conser-

ved currents given by Noether's theorem, i.e,.

k
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The Polsson bracket relation, at egqual times, Is
IR, e G0 =t 1 e (3YE D) (6)
ot e P ij
and hence, for the conserved charge,
@ = [ Iy dlx (7)
the relations
k > _ . 1k +
{Q ’ ¢1:(y)} = 1 I‘.':j ¢(V) (a)
are a consequence of the classical canonical brackets

oy (0w w31, = 6,5 607, (9)

35,0

b
Via exponentiation of the charges, one obtains a represen-

tation of & in the phase space of the classical field theory.

It was 3 standard praxis, prior to Nambu's and Goldstone's

abservation, to obtain the construction of unitary operators in Hil-

bert space U{A), implementing the substitution law
B ¢ () UT(A) = V(M) (=) (10)
¢1’ z 4] - V‘I:j ¢J~ ks 3
by replacing Poisson brackets simply by commutator brackets writing

thus:



ix,4"
Ula) = ¢ . {11)
with
L rf('}) d's , (12}
and the egual-time commutator relation:
X Ghe. (] = - 1%, 6. ()8(-7) (13)
0 iy i %5 :

This formal procedure of constructing unitary symmetry ope-
rators by simply copying the classical steps is correct in a quantum
theory with a finite number of degrees of freedom, i.e., Quantum Hecha
nics. As a consequence of the uniqueness theorem of John v, Neumann
(every irreducible representation of the cancnical commutation rela-
tion is unitarily equivalent to Schrgdinger's), an algebraic symmetry
i.e. an invariance of the Lagrangian and canonical relation under a
symmetry group is always implementable by a unitary operator U(X). This

is the basis of Wigner's analysis of symmetries in Quantum Mechanics.

The situation is different in QFT. Fortunately, in order
to understand symmetries in QFT, we do not have to face the intricacies
of canonical representation theory. It is sufficient to be aware of two
aspcects in which the QFT discussion deviates from classical field theo
ry as well as from gquantum mcchanics:

1. The Lagrangian, the equation of metions and the definition of «cur-
rents involve products of ficld operators at the same peint and, the-
refere, arc i1l - defined guantities whose proper meaning should be ob
tained by limiting procedures starting from different space-time points,
2,.The construction of the “classical® charge'? from its density requi-
res the vanishing of the field at large distances, a requirement which
always can be fullfilled by appropriately restricting the Cauchy data

cof classical solutions.,

The existence of particle-antiparticle fluctuations occuring
all over space (translational invariance) in QFT prevents the guneral
use of eq.(7) as a definition of a well defined charge operator. Ewven
in the absence of spontaneous symmetry breaking, the convergence pro-
perties of this integral depend in a very subtle way con the properties

z20

of the states

The short-distance properties7

had been understood in  the
framework of operater short-distance algebras, by the end of the 60's,

Apart from the anomaly phenomenon, which from a certain point of view



has a classical interpretation®, they do not enter the discussion of
spontancous symmetry breaking., It is rather through the fluctuation
propertics 2, , which fall intc the category of long-distance behavior,
that a perfectly conscrwed quantum Nocther-current may lead to nonexis-
tent charges anmd spontancously broken symmetries, Thus, the Nambu-
-Goldstone phenomenon is an ¢vasion of the Wigner quantum mechanical
symmetry mechanism due to subtle properties of field theoretic flug-
tuaticns and as such very basic teo elementary particle physics,

The standard argument”? concerning spontancous symmetry brea-
king, and Mambu-Geldstonc bosons, is abstracted from the ¢g(y) $igma

model Lagrangian. Consider the renormalizable 9o(¥) symmetric Lagran-

gian,
Lpo=ay e, 8t e - e, (14)
ple) = (L0, - )7y {15)
Lthis Lagrangian has a ¢(7)/0(7-1) - manifold of classical minima. Qua

siclassicaly, ence constructs 2 QFT by relating one of the minima“* y

say .,
r
o
nin VB | (16)
U.
[
)
to the field theoretic vacuum in zero {(lowest) order, i.e.
L - Yr s . 1
Yoo, Vi 57'.[.' an

By performing a shift in the Lagrangian,
e T - T T {(!8)

ore finds a Lagrangian in ¢ which admits a renormalized perturbation
. 3 . 13 \
series”? , and therc¢ cxist Noether currents [ which are conserved

in every order of renormalized perturbation theory*®, The model con-
tains -! zero-mass bosons and the symmetry is broken as aresult of (17).
In order to relate these two properties, a knowledge of its derailed
dynamical structure i~ not required. The standart argument is the fol
2z

lowing The vacuum expectation value of (13) yields

LG, s 0T = - IR e sGEY) (19)

P a
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On the other hand, the Kallen-Lehmann reprecsentation for the two-point

function,

<Trfzd, o w)]> = ¢ 9 Alemyik®) et ae® L (20)

with the conservation of Ii:
' pki{ﬁz) =0 i.c. pki(xz) = ckié(Kz} (21)

yields, together with [14),
Koo - If <$.> (22)

i.e, the existence of ¥-1 Nambu-Goldstone bosons related to the &-1

unbroken directions.

The argument may be casily generalized to renormalizable La
grangians with other symmetry groups and unbroken subgroups. The es-
sential mathematical input is the existence of nonvanishing c¢xpecta-
tion values of elementary {canonical) fields. The shortcomings of this
method, as an argument for the general relation between spontanecusly
broken symmetries and Nambu-Goldstone bosons, are the following:

1) For composite fields, commutation relationsof the form (13) are not
a priori rcasonable., The use of coperator-short distance cxpansions for
the construction of local ceomposite fields and preducts with currents,
which many years after the Nambu-Goldstone observation were investiga
ted by Wilson’, with sufficiently many additional assumptions, would
perhaps allow for a more general argument aiong the above lines,

2) In the case of no symmetry breaking, which should be suitably for-
malized mathematically, one really would like to have an argument in
favor of hermitean charge operators as generators of the corresponding
finite symmetry transformations.

3} The recnormalized Lagrangian perturbation theory of a spontancous -
-broken-symmetry situation does not allow a conclusion concerning the
true existence of the broken symmetry phase.

The problem of existence is the most difficult onec., With the

help of techniques known in statistical mechanics, field theorists
were able to make some progresszk. In a way, this problem does not
concern the Nambu-Goldstone theorem, becausc the existence of the

broken=-symmetry phasec cnters as an assumption.

Shortly after, proofs running along the indicatead lines were

. - 2 -~ . .
given; Swieca’® and Ezawa and Swieca’® gave a proof using more power
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ful techniques and thus remoying the shoertcomings 1} and 2}, The
conceptual mathematical basis of this proof is contained in a prior
work of Kastler, Robinson and Swicca®’, One difference is that the

Wightman framework is used instead of the C*-algebra methods and the

new important ingredient is the use of a more powerful spectral re-
presentation, that of Jost-Lehman-Dyson?®. | will indicate the main
steps of the derivation. One starts from local Wightman polynomials

of the form:
B
A= ) oh ez ) dley) olx)) dz .. .dz (23}
[r]
where h” are test functions from the Schwartz ¢lass of compact support
D. in this way, one obtains well defined operators which arc affilia-
ted with a compact space-time region and which, if appliecd to the

2 \
vacuum, generate a dense sct of states ., We supress in our notation

all dependence of the fundamental field & on indices. At its most
basic level, a symmetry of Q.F.T. is a correspondence

# - AA {24)
induced by (3) which leaves invariant equations of motion, and the
Lagrangian as well. However, from the point of view of obscrvable con

sequences {particle multiplets, symmetry rclations of cross sections,

etc.), onc has to clevate this algebraic symmetry, as Wigner did in

Quantum Mechanics, to a unitary operator F{A) in thc physical state
space:

¥ 4 ) = Ay (25)

Ba) |0 = (0> | (26)

Formally, U{A) is expected to have the form {(11), @ bcing related to

a conserved current with

<

dAA‘ _
>o=< L@, A > = 0
T [ 4m0 [@:4]

Since 4 has a compact support, say O, any opcrator which is localized

in the causal complement OC of © commutes with 4. Therefore, the un-

broken symmetry should be characterized in terms of

LIl ) ], = 0 (27)
o
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for all Wightman polynomials 4 eq.(23), and I”(fd, fR } given b
. 0
7 Iu(ro,ide(xo)fR (%) dx, is effectively the relevant part of the chargt
]
which does not commute with 4. In eq.{27), fR(;) is a smooth test
function, i.e.

1, Ix| <&
Falx) = (28)

+
0, |x| > 7R + ¢,

thus preventing violent surface effects, and

fd(10)=0, |J.‘;3l>d,
(29}

/ fd(xn) d x, = |

is a smooth compact support interpolation of the d-function in time
which, for noncanonical fields, as the current, is necessary In  or-
der to obtain a finite operator. Ay is simply the radius beyond which
one enters the Bc region {augmented by d, where 24 is the thickness
of the time smearing), The independence on R, once A is larger then
g, is a trivial conscquence of causal commutativity, whereas the iE
dependence on fd is simply obtained by using first the conservation
law {with, say, d>d!')

TSy £g) I S = IO S (30)

I

Q
fizy) = J } (falay) - fplzt)dde) € 0,
and the causality condition
(r° (7, ;c;f-[?),ﬂ =0, B>aA, . (1)

One says that a theory exhibits spontancous-symmetry- brea-=

king.if for a conserved current there exists an 4such that
Lm <[ (fa fplaia L > 0 (32)
Al’m

Part of the Nambu-Goldstone theorem is

Lemma 1.: A spontancously broken symmetry in the sense of (32) requL

res the existence of a Nambu-Goldstone boson,

The remainder is contained in

Lemma 2,: |f eq.(27) holds, the formula
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Q4 lo> = [°(f /)4l pp 0>

defines a charge operator (on the dense set of local states) whose
exponentiation yields a one-parameter symmetry (sub)group. In .order
to prove Lemma |, Swieca used the Jost-Lehman-Dyson representation
for the commutator in (32) in the form derived by Araki, Hepp and
Ruelle??,

o

<ol %), 4| 0> = 7, au? £ &*¥s(x-F %0 u2)p, (12,7)

e 3 + = +
+ 1y du? s d'y = B(x=v,2, W0, (12,9) (33)

- M
whe re Pi(ux.y} are measures Iin p® having compact support in ¥y, this

support being related to that of 4, They can be split as follows:

o (u2,) = B )8 (F) + V.S, (34)
pituz) = fp{ (Uz,¥) d’y (35)

- 2 + F -+
and Gi(u ,y] has the same support in y aspq.

The conservation law and causality yield

d 0
o 0| [3°420, 525 4] 10%5p 20y = O (36)
and therefore
o N " cosHTy
J du? 5oy (uP) =0 (37)
0 {3} U5inux0

which is only consistent with

and
P, = AS(u®) |, X # 0 from eq. (32).
A can also be written, for &, = 0, as

MZ
- -
§ o= ] du? [ e, (u%,y) gly) d’y
L]

= <0140, )P (M) 410> - <0 lap(42) 400, lo> . (38)

Here g is a D-test function with g(y) = | in the region of support ¢;



13

P(¥Z)} is the projector onto the subspace with mass € ¥°, The validi-
ty for cvery %% » 0 leads to the existence of a discrete zero - mass

intermediate state.

Note that the [L-covariant properties of the conserved cur-~
rent were¢ nat used up to this peint. In case Iu behaves like a vec-
tor {i.e. has no further suppressed L-indices), the intermediate sta

te is necessarjly a scalar boson,

In the casec of spontanecus symmetry breaking, there exists
therefore a Wightmann polyncomial (i.e, a product of fields) A s

which couples the Nambu-Goldstone boson to the vacuum:

éig <pla|0> # ¢ . (39)
This is impossible in a two-dimensional space-time, since eq. (39)
implics an infrared divergence in the two-point function aof 4. This
impossibility of two-dimensiconal spontanecus symmetry breaking was
known to André and is implicit in his proof. Within the context of

the standard method of proof, it was derived by Coleman®?!,

Let us now comment bricfly on the second Lemma. This lemma

has a modecrately simple proof in the case of the mass-gap hypothecsis,

For special guasi-local operators A4, the formula®®

Lim  <0[4 I°(f 4 ,)0>=0 (40)
Fereo d*E
is a rather casy consequence of eq.(27). It is only necessary to de-
monstrate that (27) has a generalization for quasi-local A's and con

vince oneself that, by using the spectral gap, there exist quasi= 1o

cal A's which, applied once to the vacuum, create a onc=particle sta

w

te whose hermitean adjeoint annihilates the wvacuum. The next step |

the convergence:

Vim <04 I°(f, fa)Bl0> = 1im <o) a[Z%(f,, 55, 8] 0>, (1)

Hao Hs o

i.e. the cxistence of lim In(fd,j;) between quasilocal states. In
Ko ki

order to e¢xponcntiate this coperator, one has to enter the rather

technical complicated discussion of essential self-adjointness on

the dense domain of quasilocal states®?, For internal symmetrics, which

do not change the localization properties of states, Swicca used the
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fact that A|0> is an analytic vector for @ whlich leads to the conver

gence
RS

vta) ajo> = § L9 40 (42)

The discussion without the spectral gap {(i.e., QED)} and the

construction of exponentials for space-time symmetries is more in-

volved and model-dependent. An especially interesting case will be

discussed later In connection with global conformal symmetry. Then,
the resulting global representations turn out to be representations
of the covering group with operator phases (i.c. reducible represen

tations) for the center.

Afrer the spontaneously broken symmetry sltuation was rea-
sonably well understood in the relativistic case, Swieca’? studied
this problem for nonrelativistic many-body problems, For this purpo-
se, it Is illustrative to consider the Fourier-transform

o -
Tipx + 1Py
L(p.p,) = 7 <0|[i°(x,z,)4) 0> ¢ d“z

By entirely formal manipulations {dropping boundary terms afrer

using the conservation law) one obtains

lim p, L(B,pu) =0 , (43)
B0

and hence
L(0,py) = Adipe) . (4)

This zero energy excitation is the E = 0 part of an excita
tion branch only if L can be written as g(—;'),pD - E(p)) (or a sum of
such a function with different dispersions), where g is smooth inthe
first variable, The use of the spectral representation (33) shows
that with E{p) = 1|3| this is the case in relativistic causalmodels .,
Smoothness properties in B—Space are related to fall-off propertics

* -+ H +
in x-space. Swieca showed®" that with

lim X% <u|[.y(§)z=1 L.*(Si),92]|0> -0 , (45)
X400
and in particular for: U(;)P1 LF(;) + F%(z°, %), (where the B,'s (i =
= 1,2) denote gquasi-local polynomials) the above farmal considera-

tions leading to a continuous g, can be legitimized.
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So the relevant question in connection with nonrelativistic

theories is: what property of the Iinteraction, say for

Hom S 3____“,,;15, Qo 1Y) VG0 ade atyeun (46)
(M = chemlcal potential, ¥ = particle number operator) will lead to
eq.(45)7

Swieca demonstrated that the potential V¥ has to decrecase at
infinlty faster then Coulomb's, it is well known]s that for Coulomb
ranged potentials the "would be' Nambu-Goldstone excitations may be
transmuted into plasmeonic excitations with a finite energy gap above

the ground state.

In any many body system with a fimite density, Galilei in-
variance is always spontancously brokecn; this is a consequence of the

velocity term in:

bt -+ hd
<J> —r <J)- + v<p>

So there arc always phonen=like excitations. Using the techniques of

sum rules, Swicca showed that the following thecrem®*’®" hoids.

Theorem: |f —%:E ¥i{r) - 0 ,

one obtains for the spectral density, defined as a function of the

frequency w, as

dv (w) = du_ {w) + du, (@) ,

P P P
with
g
<a|pt®,0) ol0,0) s> = [ ¢ P gu (w) d%p
P

-
for p+0 a concentration of weight at the origin:

Joodv_ (w)
2 -
lim E—?——E—k— =0, @ > 0 arbitrary .
p+0 I7odv, (w)

In order to allege that these excitations have a quasi-par-

ticle nature one necds further dynamical information.
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Thus In contradistinction te the relativistic case, short
range many-body-interactions agiwaya Imply the existence of MNambu-
~Goldstone excitations, those of broken Galllei-invariance. To ob-

tain additional information, on the zerc-energy excitation spectrum
from other spontaneocusly broken symmetries, is a delicate and cer-

tainly a very model-dependent matter,

Recently, Landau, Perez and Wreszinsky discussed the Nambu
-Goldstone issue for quantum systems, at finite temperature’!?, Com
bining Swieca's technique with the Bogoliubov inequality, they sho-
wed that symmetry breaking implies "slow clustering' of finite tem-

perature functions,

What does happen to the charges in a relativistic theory
with long range interactions? The only known relativistic models in
this category are gauge theorigs. It had been known for some time
that there are two types of abelian gauge theories with entirely
different physical behavior. In conventional gauge theories {as QED},

the identically conserved renormalized current jv

e S (47)

uv v

leads to a nontrivial charge, formally given by {(12). Using a phy-
sfical description of the theory in which no unphysical states ap-
pear (example: the Coulomb gauge), one immediately recalizes that a
physical charge-raising operator cannot be local with respect to

the electric field strength, and
EG), P (5 Th e, (z-9)% <o . (48)

In fact, the Gauss law requires a 1/r® fall-off for this
commutator. In the usual covariant gauge formalism (i.e, Gupta-
-Bleuler), the locality is artificially obtained at the ecxpense of
ghost states, §.e, the formally local operator P{x) applied to the
vacuum leads out of the physical Hilbert space. In QED, the physi-

.

cal electron states carry a charge

<pl@lp> = <plp’>+c(0)

Here G(p-p')?® is the physical form-facter. For a scalar particle {for

simplicity of illustration):

pld, (0 [pr>= tp+p"), Gle) . (49)
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In 1964, Higgs'® proposed a completely different  abelian
gauge model which is formally obtained from scalar QED by allowing
the scalar field to develop a honvanishing expectation value via the
nontrivial minima of a potential like {(15), This model has a physi-
cal spectrum of finite mass particles (i.e. the photon turns into a
relativistic plasmon) and the charge of all physical particle is ze-
ro as a result of the vanishing of the zero transfer form-factor. The
formal mathematical aspects of this model, including its renormaliza
tion theory, are well known. Becausc of the formal analogicswith the
Nambu-Goldstonc models, the Higgs model has been often refercd'to as

a "spontancously broken gauge model',

in 1376, Swiecal’ proved a general structural theorem rela-
ting the mass spectrum with charge sectors in thcoaries with fidenti-

cally conserved &{1) currents (47),

Consider the form-factor of F'V.
p Y [prs = [p-p )Y (pe)Y = (pep' YW (p-p) V] 7). (50)
From {47), one obtains
G(¢)

) =42 (51)

t

I f the states carry a non-trivial charge, we have G(D) # 0,
and the pole in the photon-vertex may be taken as an indication of a
zero-mass photon state, However, the dispersion thecoretical formalism,
linking poles in on-shell quantities with physical particles, is only
valid if the particle |p> possesses a local interpolating ficld which,
as we have alrcady stated, is not the case in QED., So, one has tofind
a method avoiding any prejudice suggested by dispersion theory., For

this purpose, Swieca studied the commutator

Ry = <= o] [P, )] (B0 . (52)

| f one wants proper states, onc should imagine the IB:D) as
being normalized packets which are narrowly centered around 3=0. In
an asymptotically complete theory wishout zapge-mass atates, there is
necessarily @ mass gap between the one-particle hyperboloid and the
continuum in the '"would be' charge sector. With such a gap, one easi
ly finds a fast decreasing smearing function g in ;-space with the

following p-space properties:
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gip) =0 , lpe |26 , & < mass gap ,
gip) = gi-p) ,
i (53)
g(0) -1
Jlg) - rittyaly)dy
Local commutation yiclds now
, A
iCT'(;)I < Tk,z(_ ’ far any k . (5"4)
3
This is now confronted with the direct calculation { only
aone-particle intermediate states contribute in a theory with mass
gap)
P
v x .
C(%) = 4mi fd'p ¢ G o3, Aremt - pi?
%z+m2 £
. "2 . _ (55)
im €5 (%) = -¢gio) 2 Lli/2) o B2 ey
" lx|l+
Xroe
where n+l is the space-time dimension,
Hence for QFT in more than two dimensions, the compatibility
demands that
(o) = 0 ,

T.e. charge neutrality. The charge of an identically conserved cur-
rent is therefore scrcenedy, only if there are true photons do there

exist nontrivial cRarge-sectors.

Swietca noted that, similar to the Nambu-Goldstone situation,
the two-dimensional casc is exceptional since any conserved current

may be written in the HMaxweilian form, with

£y - By O (56)

There are many models with conserved currents and mass gaps e,g.'’

Ty o o= L v
A E Suv ate , (57)

where ¢ is the quantum Sine-Gordon fielid,
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A more general and rigorous treatment of Swieca's theorem
and its Implications has been given recently by Buchholz and Frede-
nhagen!'®, These authors also realized that the method Swieca used
can be extended to classlfy all representations of observable alge-
bras with a mass gap energy-momentum spectrum. They proved the exis-
tence of antiparticles and the '"finite order para-statistics' of par

ticlegtt?!,

It Is interesting to understand the screening properties of
the abelian Higgs model in more detail, Perturbatively, the two fun-
damental particles of the model are the massive vector meson and the

Higgs meson. Their gauge invariant local! interpolating fields arec:

-?.

Fly » 00 (58)
the composite field developing a nonvanishing expectation value. The
formal language of broken gauge symmetry is physically somewhat mis-
leading. In contrast to the Nambu-Goldstone situation, which leads
to an infinite charge:

N - 3 .
fi,(x¥d’z thys >, (59a)
as a result of long range properties of states (even, if one handles
the integral appropriately!}, in the Higgs model we simply obtain
s Ty g3
fi(x)d = Hohys 0. (59b)
The resulting picture is in complete harmony with the '"first law" of

gauge theories:

"Gauge symmetries' of the second kind cannot be broken because they
do not constitute physical! symmetries but rather a mathematical for-
malism by which the physical content is separated from the spurious

properties of the mathematical description,

The formulation of the dynamical laws of gauge models sole-
ly in terms of physical (local) observables is presumably a very dif-
ficult task and anyhow has never been achieved in a mathematical ma-

nageable form.

A simple derivation of this almost philtosophical pcint as a
consequence of the mathematical consistency has been given by Elitzur

1
and Luscher®® in the context of lattice gauge theories, This view
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° to most physicists with a background

point was known for a long time"
in general QFT. | remember discussions with André which we had more
than 10 years age. |t 5 interesting to recall that one of the inven-
tors of the minimal model of cletro-weak interactions at a High-Ener-

“l called it a "moot point". Recently 't Hooft"? made

gy Conference
these aspects of the Salam-Wecinberg model more explicit by exhibiting
interpolating §0(2) neutral composite-fields for all the physical par-

ticles appearing in every order of renormalized perturbation theory:

0, €, .90

.
v it

physical Higgs particles: ¢f¢,e ;

\ i i f
physical vector mesons: Eij¢i(pu¢)j R Cij Qi(Du¢)j

photon : lin.comb. of(@fDua B“) R

Vphys ¢+¢L

e . ; .
phys : E‘l:j ¢',z: VLJ’ ’ VR [

where !iyn.comlb, stands for linear comblnation,

Here $L and wR arc the lefrt-handed doublet and the right-handed
one respectively, and Bu is the gauge potential of the U(1) factor in
the St(2) x u{1) Salam-Weinberg model.

In models with elementary Higgs mesons transforming according
to the fundamental representation, there is no structural difference
between "scrceening' and Yconfinement'". |n one situation, the physical
states exist in perturbation theory, whercas in "confinement! one
links more with strong coupling bound-states, which are usually accom-

panied by trajectorics of resonances.

Does this picture carry over to simple gauge groups if they
are only "incompletely broKen'? As an cxample consider the Georgi-
-Glashow G(3) model. The perturbation particle content of that model
(say, without fermions) consists in a massive Higgs-particle, a char-

ged massive W-meson and the photon, The previous construction of lo-

cal interpolating gauge invariant polynomials only works in the case
of the Higgs-particle and the photon: ¢T¢, Fﬁv¢a

The composite gauge invariant operator, ¢f¢, develops a non-

vanisning vacuum cxpectation value in the Higgs phasc and this cxpec-
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tation value will be called a '"condensater'. So the common feature, of

what is usually {(in our viewpoint misleadingly) called spontancous
symmetry breaking, is the formation of gauge invariant condensates
and not the appearance of nonvanishing order parameters as in truly
broken symmetry thecoriecs. However, in contrast to the previous mo-
dels, in which it was possible to construct locql gauge invariant

vector potentials, viz., in the abelian Higgs model:
.".
Ay = '
ty = ¢ D0

the Georgi-Glashow model possesses only a local gauge invariant ficld
strength but no potential, This difference is significant sincec a lo-
cal gauge invariant potential can oniy exist in a theory without char
ge sectors; the nonexistence of such a potential signals the onset of
an "electromagnetic phase' i,e. charge libecration. By using ¢- depcn-
dent gauge transformations, L(®), which transform the generic ¢ into

a standard form e.g.
142 “
te)e = (87e) 7 L (8

.o . ,
where ¢ ¢ is the gauge-invariant condensate operator, ©ne can convert

. . a . .
the non-abelian gauge-variant opcrators Puv into three ncw objects:

+

Fp ST L
The first one is gauge invariant and the sz suf fer an abelian gauge
transformation. The situation is analogous to the Wigner "little group"
appearing in the representation of the Poincaré group: if a non- abe-
lian gauge transformation is applied to the Hiv they suffer an abelian
rotation which is a function of the non-abelian gauge paramcters.
Equipping, in addition, the H;v with the exponential Coulomb-fluxcs,
corresponding to Fﬁv. ¢a, one obtains {(formally) gauge-invariant char-
ge carrying operators, These operators have terrible mathematical pro-
perties which render them, probably, beyond mathematical control. In
this context, it may be interesting to point out that Swieca always in
sisted in the priority of constructing gauge invariant charged (infra)
particle states, rather then working with operators. He considered the
work of Wightman and Strocchi''®, on the derivation of charge supcrse-
lection rules, as substantially tautological, Recently, Buchholz!!?
has initiated a systematic study of this difficult problem. He shows
that the infra-particle structure, with their inequivalent Bltoch=-Nord-
sicck clouds and the aspect of broken Lorentz invariance {ordinary form
factors do not exist becausec of infrared divergencics) cmerges in a

natural and systematic way from an analysis from the quantum Gauss law,



The previous remark concerning a criticism of the terminclogy
spantancously broken gauge-invariance' ought to be softned by adding
that this confusing language, apart from some incorrect discussion of

QCD; “*, did not lead to wrong physical cenclusions,

It is interesting to mention that the 1976 theorem of Swicca,
although not directly applicable to nen-abelian color, is relevant for

the existence and infrared properties of quantum mcnopeles.

In the ¢(3) model, with

e g gMUKA g

v KA ¢ﬂ ’ (60)

we have a gauge invariant identically conserved current whose nen-tri-

vial charge requires the presence of 'photons'',

It should be clear that Swicca's theorem does not cxclude the
occurence of sectars in massive theorics whosc conserved current is not
identically conserved. For example, in QED with a massive photon put

Yoy hand'", therc exists, in addition to the identicaltly conserved Max-
wellian current, another conserved {but not identically) U{1})-current
giving rise to sectors, We speculated before that non-abelian simple
gauge group models with an incomplete Higgs mcchanism may have certain
aspects in common with QCD type models. Hence, it is intercsting Lo
know whether color neutrality of physical states is a general featurc
of nen-abelian gauge theorics. This problem of “kinematical color ncu-

trality' was discussed occasionally among Swieca and collaborators.The

consensus was that such a property pervades all non=-abelian gauge theo-
ries, '"broken' or '"unbroken'. A wvery naive argument runs as follows,
Consider a lattice gauge theary (fer convenience) in  the time-like

gauge and the Hamiltonian formulation®?;

U{time link) = 1 , i.e. formally A;‘ =0 . (61)

In such a formulation, one can introduce the field strength

a . . . .
E” which still transforms under spatial gauge transformations as

-»

v () B vt = TG0 L ERG (62)

On the other hand, any physical (= gauge invariant) state on
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a lattice may be obtained by performing 'gauge averaging' starting from

arbitrary states.
’

|pphys> = [ Uop(ﬂ) [y Bdﬁz , (63)
where di_ is the normallzed Maar measure.

The volume of the gauge group on a finite lattice is finite.
and hence this averaging is well defined. Using the invariance of
lYphys> under Uop(ﬁ), and taking the cxpectation value of (62} bet-

ween physical statecs, one obtains a consistency condition:
-+
< phys | £ | wphys> = D {64)

The infinitesimal generators of U(A) is the latticec version

%0 (p? contains the density coming

3
of the Gauss operator ''div £ - o
from covariant derivations) and the gauge invariance of |wphys > is
simply the validity of the Gauss law betwecen physical states. In the

temporal gauge we obtain, thercfore:
-+ -
<Uphys |¢%|pphys> = } d$ < yphys !Ea(x)l Y phys»> = 0 {65)

This argument is not to be taken too seriously, since it
employs gauge dependent operators, viz., g%, Only the Casimir opera-
tor 2% g9 s physical, but the relation of 5% to the field strength
is more suitable, We propose to discuss a more acceptable argumentin

a future publication.

Such a “"kinematical color neutrality' does not resolve  the
problem of '"screening versus confinement', In the QCD, the nechanism
is believed to be confinement, This problem of screening and confine
ment was the prime motive for carrying out rather detailed investiga
tions in two-dimensional gauge models. We will return to this peint

in the next section,

There are many more structural properties of QFT which Swieca

investigated.

Together with R,Haag"®, he tackled the very difficult pro-
blem of asymptotic complcteness. From an intupitive recasoning, it was
expeccted that a certain propuerty corresponding te the fact that a fl

nite volume of (classical) phasc-space contains a finite number of
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quantum states, appropriately formulated in QFY and there called the
""compactness property', should play an important role for asympto-

tic completeness. Indeed, certain {non-Lagrangian) models of Wightman

fields which fulfilled all "axjoms' except the compactness property

were shown to be asymptotically incomplete, Many years later, rather
trivial applications of this compactness were made in two-body nonre
lativistic potential scattering”’, A '‘geometric scattering method”*?
based on the Hzag-Swieca compacteness property became popular. Howe-
ver, even in higher body potential scattering, the probiem of asymp-
totical completeness based on geometric megthods is physically subtle

and mathematically complicated.

Another interesting structural problem arose in connection
with the so called '"short-distance algebra' of Wilson and Kadanoff"?
Within the context of renormalized perturbation theory, the defini-
tion of renormalized composite-operators and their short distance
properties were investigated most thoroughly notably by Zimmermann®
and Lowenstein®®, The result is a Wilson-Kadanoff short-distance al-
gebre in the following sense:

3

. 2 ' ]
q;(x) % y) = % i (r-y)Céy) +R”(x,y) {66)

Here, C, is a complete sct of dynamically indecpendent {i.c, the ideal

definedfby the cquations of motion is divided out) composite fieclds

constructed from products of basic fields (which are included in the
denumerable list of % } and derivatives, The series on the right-hand
side is asymptotically convergent: the remainder term, R,, wvanishes
faster than any preassigned power: ’

Rﬂ(r,y) 2 0 (Iru-y [n(ﬁ)) , (67)

u
if one increases ¥ corrcspondingly., For simplicity of notation, we

have absorbed all internal and Lorentz indices into ¢ .,%,2.

In a scale invartant QFT, there exists a tight relation bet
ween the operator scale dimension of the % 's and the singuiarities
and the directional dependence of the coefficient functions, In fact
by making assumptions on the transformation propertics and the num-
ber of 'relevant' operators with dim £ Z for a short-distance alge-
bra in two dimensions, Kadanoff®’ proposed a derivation of the eriti
cal indices of the 1sing mode! (abandoning the tattice by passing to

the scale invariant limit of the model)., Thesc ideas of using proper
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ties of scale lnvariant limits in order to obtain dynamical informa-
tions are the basis of the closely related 'conformal bootstrap! pro
gram of Migdal®! and Polyakov®?, Swieca started to get interested
in conformal invariant QFT around 13972, Hy that time the causallty
aspects of global conformal transformaticons were already understoed??
However, apart from some trivial cases, the [ ro of the finite confor

mal substitution law, which In principle follows from the infinitesi-

mal relation was not kaAcwn. In two papers ' of Swieca, in collabora-
tion with other authors, it was demonstrated that in local QFT one
obtains represcntations of the (infinite sheeted) covering group
EB(D,Z] of the conformal group 50(2,2) (D=dim., space-time). For dppe-
dunible representations, the local fField 4 naturally decomposes into

non-ltocal components:

. 1 ,
Ale) = f dE A7 (x) (687
(the E-integral beimg a sum in all explicitly studied cases), sueh that
the canfarmal transformation law for cach irreducible component is
{we restrict our attention to proper conformal transformatiors corres-

ponding to the parameter LU):

TG VAT ES TS o - Al (69)
v, (b, z) < e
with
zy, =$E:££;ﬁ s olb,x) - 1-2bx + s
alb,z)

bt
and (9% ) being the analytic continuation of the corresponding eucli-

dean expressions with the + %€ Wightman prescriptions,
The &-spectrum which also appuars in the center of the con-
formal group law:

Bty 20 a ewple ET(ging - 28] 4

b (78]

is intimately related to the dimensional spectrum of the theory, For
free fields, the £-decomposition of 4 is the same as the decoempasi-
tion into creation and annihilation parts. The fact that the integra-
tion of infinitesimal transformation propertics of OFT may lead to
ray representations of the covering group is interestcing in itself,

Without this mechanism it would appear as a miracle that, for example,
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guantum solitons in the ¢{y) Gross-Neveu medel transform as iso-spi-
55 \ \ \ 5 ¢ .

ngrs” ", In a subsequent publication, Swicca®® and collaborators in-

vestigated the validity of global conformal operators cxpansions, 0n

the vacuum, they have the form:

A8 () (0> = T fxl = )C?"J (ey)de, 0> (71)

Here the kernels & are some kind of globally cenformal in-
variant vertex functiors., On the vacuum, anly the £ 0 componcnt does
contribute; on other statces (for example those generated by the appli-
cation of local flelds) also other EL-components participate. These ex-
pansions for free zero-mass fields and the Thirring model turn out to
be cenvergent whereas the local Wilsen-Kadarnoff c¢xpansions are {even

foer free fields!) only asymptotically convergent,

Hence we believe that such global! cvxpansions generally exist
without convergence problems. For the giebal expansiorn on the vacuum,

it is fairly easy to give expiicit formulas for # °%, this turning in-

tc a more difficult task away frem the vacuum®®, These global confor -
mal operator expansions have their cuclidean counterpart in the eu-

clidean conformal bootstrap program in the form develop by Hack®’,

The massless Thirring model furnishes a nontrivial soclution
of this pregrama in two dimensions, For every real spin (the two-dimen
sional L-group is abelian) and sufficiently pesitive dimension (depen-
ding on the spin), the Thirring model in the general form as discussed
by Klaiber®?

when we worked on these problems) that this was the only solution, Ho-

solves the bootstrap equations. We thought (at the time

wever, recently it became clear to us that there are many more confor-

mally covariant salutions,

In the days of the conformal bootstrap program, we were in-
terested to understand whether such convergent global operetor-cxpan-
sions of the form of ¢q. (71) might hold mere gecnerally in any Wightman
theory. They certainly are valid for massive frec fields, and their
composites, Establishing such expansions would surcly by of theorcti-
cal as well as practical value. Theoretically, it is of great intercal
to resolve a gencral QFT in terms of three-point functions of the cem-
posite fields, Practically, they may serve to explore those regions of
momentum space which remained uraccessible by using Callan-Symanzik®®
techniques together with Wilson-Kadanoff short-distance expansion (e,

g. infrared factorization regions in QCD).
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We did not investigate these problems on a profound level,
becausc after 1974 there emerged other very intercsting problems in

QFT related to the vacuum and particle structurc,

There are three papersof Swieca and collaborators falling
into this category of structura! investigations which arce concerned
with stability and causality preoblems. In two of those publications,

these problems are investigated in field theories with time-dependent

and stationary external potentials. This work is an extension of that
of Schiff, Snyder and Weinberg®' and of Velo and Zwanziger®?, Some
of the mathematical methods were later used by Fulling®? in his treat

ment of the Hawking effect,

The third papcr on causality (s motivated by precedling work

of Lee and Wick®. These authors introduced complex poles in an S-ma-
trix formulation. Swieca and Marques® studied these problems in a
more field theoretical sctting using the Yang-Feldman equation. Al-

though in their approach there was no problem with unitarity and Lo-
rentz invariance, they showed that the basic microscopic causalitices
of the propagation are enhanced through the contribution of wvirtual
states and generally lead to an unacceptable deviation from macro-cau

sality.

Il. MODEL STUDIES AS A LABORATORY FOR NEW IDEAS ON
DYNAMICAL PROPERTIES OF QFT.

At the beginning of the 70's, a renewed interest in the age-
-old difficult problem of QFT: the connection of particles and fields
began to develop. Here the QFT of the 50's and 60's had little to of-
fer; a perturbative Lagrangian in QFT only accounted for those particles
which had a sufficiently simple relation to the Lagrangian fields., On
the other hand, ‘the approach of QFT based on general physical postula-
tes (sometimes referrcd to as Axdomatic QFT) was too inespecific. In
the L57- and Wightman-schemes particles played essentially {apart from
perhaps Nambu-Goldstone bosons) a phenomenologicai role; together with
the causality properties and commutation propertics of charges or cur-
rents, one was able to obtain Dispersion Relations, Sum Rules and All
That. '"Constructive QFT", closely rclated to Axiomatic QFT, was unable
to produce new intuitions for "peculiar" (from the conventional vicw-
point) dynamical properties of the physical statwe space, e.g. #-vacua,
kinks, solitons, arder-disorder duality ctc.. This is not to say that

those new structurcs coutld not, with modest easc, be incorporated into
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QFT. One of the first models investigated with this specific purpose

in mind was QED,. This model was already ‘" introduced by Schwinger in

1962 as an illuilration of his speculation that ¥{1) gauge theorics can
exist in a phase other than the QED phase and that the massltess of the
photon is not an automatic consequence of this principle of gauge in-
variance of the sccond kind,

In modern functional language. Schwinger's observation can
¥’

be paraphrased in the following way. Consider® the functional de-

terminant of the two-dimentional euclidean Dirac operator;

1 : 1n -
Zder = P' _ T ks iyu(a“_,:e,;u) ) (13
det % 2

How can one define this formal object? In order to aebtain a defini-

tion for sufficiently general ﬁu's, one¢ has to go beyond the Fredhelm

method. There arc two known ways:

1) Use the conformal invariance of the massless Dirac equation in ar
der to pass the compactified euclidean space: Rzﬂﬁi = $%. Verify
that all "classical'" gquantities (e.g. Green's functions, Gc) of
the compactified eigenvalue equation (R = radius of §%)

R i T 2L I I P Eo g (2)
R+ R+

—
I

omission af A = Q) {3)

are the same (apart from conformal factors) as those of the B* theo-

ry. Hote: this hotds only in the absence of zero modes A,=0 far which

L
the precise condition is:

|(‘D

J Fodfz = e Fppl0) =0 . (4)

]

™

Non=classical quantities as the logarithm of the determinant [ are

defined as:

[ - E'(U-/‘u) - £'(0,0) + (E(D,AU) - F,(U,O)} log U (5)
with
a o 1
L(s,4) =§; rT (6)

The &-function has enough meromorphic propertics in order
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to allow for the analytic continuation necessary for defining I'. This de-
finition is recasonable becausce:

(a) it reduces to the usual one for finite determinants, in which ca-
5¢ an dnalytic continuation is unnecessary.

(b} In the absence of zero modes, eq.{5) obeys the Schwinger variatio-

nal calculus e.qg.

L oind, & (
dy (z) = EE:T;T ' 7)
where the left-hand side is the (independently defined) induced current.

The same formula {5) is obtained if one uses Pauli-Villars

regularization .

The result of an explicit calculation,

5 WM . ,

%: i Au(slnl(x) + contribution from zcro-modes , (B)
could have been anticipated (apart froem the nonperturbative zero-mo-
diz contribution) on the basis that in the Feynman-representative of

o
L)

only the first term does survive as a result of the vanishing of the
symmetric part of the traces contaianing more than two two-dimensional

Y-matrices,

For configuration with vern {nontrivial winding}, the first

integral in {8) is defined by a "finite part' prescription wusing a
split:

. r L -V 2

A Au + 2 L“V 5" log x° . (9)

Now we¢ bricfly mention the second method which is in spirit

closaer to the thermodymamic-limit method of Statistical Mechanics.
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2} Study the Dirac equation
i@y, = Aoy (1o)
as a boundary valuc problem and compute the determinant as in eg. (5).

This approach is weoy aubtla since the type of boundary
condition consistent with ¥> and C-invariance is necessarily nonleo-
cal "7 . The form of the determinant is similar to eq.(8) but there
is yet another contribution from the boundary.

This construction can now be used in order to compute the

euclidean correlation functions, The mass term in (8) will lead to a

"“plasmon', a model illustration of the "Schwinger mechanism'. Assu-

ming for the moment that there are no zZero-mass contribution for r
A

and G, one obtains the Mathews-Salam rules for the integration cver

fermions with the help of the Grassmann rules;
. ‘ + Wt . - .
<plaey) ool Jy () oo (yn)nu](u,)..‘é {a )=

Um i
| 25, 0 - LR Ai m ()
; Z,[ [d,:l‘] v A, () L6ty A

1 v

The term in the sum represents the various Wick contractions between

5T (67) .
¥ v

v's and s using

+
ylady (y) -4 (2,y) - G (z-y) expllincar combs. (4 )}
1 H

This contribution may also be written in the compact form:

iﬁa(rl)....-w?(yl)....> expilinear combs.}(Au) , (12)

where the first expectation wvaluce i5 that of free massless euclidean
free spinor ficelds and the sccond factor contains the lincar ¢xponen
tial external Au-dcpundcnce which will be called the induced part,

r'.nd'

Hence the remaining integration is of the form

u I

f][ [dﬂlj exp (-5, (4 0) - m* J AE - Tinalry vy (13)

The casicst way to perform such Gaussian inteqrals is to write

LCi e
A . hUA + H]J 2 (I'!’O)
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ci . . Lo . . .

where Au' is the (classical) minimum of the total induced action. Li
. fa . . .

near terms in ﬁui (where f2 stands for fluctuation) do not contribu-

[+

te as a result of the wvalidity of the the classical equation for 4,

and the quadratic terms are socurce-independent. Their contribution to
the functional integral is thercfore absorbed In the factor Z. In
cq.{13) one has the option of sclecting diffecrent gauges by adding
the appropriate gauge breaking terms. In the form (13), onc obtains
the expectation values in Schwinger's (transversal) gauge as { after
continvation to Minkowski spacec):

wley). vl 0360 T - e T e e )

. - T Lh i) . {+) .
Flew) =7 {jik[(;":i (:::: (Za (;rj <, )LD (xj 7 )

) -iot w0 (1)

.k i
whe re

0 ) - z_le a’p ¢ P Giptem®) 0(py) (16a)
and

io @) - '2_:r 'f d*p s(p7)8ip) [e'ﬁpr-e(x-po)] (16b)

is the infrared rcgularized zero-mass two-point function.

11 .

The Lowenstein -Swieca analysis starts with thesc corre-
latlon functions of Schwinger, The reason for being more careful than
Schwinger in thelr derivation, in particular emphasizing the subtletics

of zcro modes, will only beccome clear later on,

Lowenstein and Swieca werce able to unravel the structure of

the wnderlying physical state-space by a very ingenuous trick.

This problem cannot be settled by referring to Swiecca's struc
tural theorem of 1976 because of the twoe-dimensionality of the pro-
blem, NHaive intuition would lcad one to csxpect some kind of "screened !
fermions, However, the results of these authors' investigations qlive

a more radical picturc: the physical content is described just in
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terms or a massive bose field £, the same L which appears in the trans
versal massive A;r. In a suitable operator gauge, the so called nno-
~gauge' which apart from a Klein transformation is a unitary gauge si
milar to the one in the Higgs model, this physical content becomes ve
ry transparent.

Explicitly, one obtains'’':

T /T " Cozye L e
Au - = Cuua o, ([:] meYL = 0, wes o {17a)
1Wi5
a4 . 5 g
’#’ﬁ - ‘%T E’T ctr,T_TY .'_(I) vy o0 { G:) \ {]7b)

where the u infrared-parameters is proportional to » in (16b). Here,
G is a two-component censtant unitary operator which commutes with
E. The presence of such a constant "spurious' opecrator indicates a
viclation of the cluster decemposition property as a conscguence
of a vacuum degeneracy. In a description based on a unique vacuum,

the components of the operator O will just be numerical phascs:

10, ,
2 ]vac;01,02> - e "o |vacie, 0, >, (18)

)

The gauge transformation ocperater (which involves in additiona Klein-
-factor, being responsible for the change of statistics between the

two irreducible Lorentz representations Y, and vz) has converted the

oriyinal spinerial '"euark' field into a bosonic field. This mecha-
nism 1s related tog the subsequently discovered '"bosonization" of
Hendelstam , a point which will be explained later cn. Lowenstein

and Swicca emphasized the fact that gauge invariant quantities e.g

73
o

wix)  expiie J A“d£“)$+(y) (19)
x

suitably renormalized, are the same quantities in the Vm_gauge as in
covariant gauges. In the vi-gauge, there exists no conserved axial
current. The gauge invariant axial current satisfies the two-dimen -

.ional anomaly '° cquation

A (5 Ny 20a)
with g = Bawd = 900 {20a
and S H -5 e’ WV

P R DN £ F R {20b)
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This is a manifestation of the Schwlnger-Higgs mechanism

i.e, a breakdown of the formal! chiral &1} invariance:
<hu> =0 cos®, <UY°Y>m Csinb , - (213

and the conversion of the photen into a Schwinger-Higgs plasmon. The
“wacuum angle™ © -91-91, appearing in the vacuum expectation values
eqs. (21) of the gauge-invariant composite operator, superficially
causes a violation of CP-invariance for 6 ¥0. However, by using chi-

rally rotated fields:
5
, =2y 0
wom et Yy, {22)
for the description of the model, ane realizes that a physical CP-in-

variance continues to exist at least in the massless version (1 vani-

shing Lagrangian quark masses) of QED,.

If one would use another gauge c¢ifferent from the y7-gauge,

there would by unphysical 'ghost' states of zero mass and with negati

ve metric, Thesc states fermally support a non-gauge-invariant but
- o . .
conserved axial current J, i,c¢. in the Lorentz gauge:
25 5 m
AR A0, 23)
v a0 (
However, the 'ghoststonce' states ' which this current ge-

nerates if applicd to the vacuum are vold of any physical meaning.

A good physical way to understand the basic diffcecrence bet-
ween the Nambu-Goldstone ang the Schwinger-Higqgs chiral breaking is
to think of two ferromagnets, ane with a local interaction and the
ather with an interaction of such a lang range that mean ficld theory
becomes uxact?u . A particular vacuum can be labeled by the direc-
tion of symmetry breaking, In the local case, it is well known that
by switching on a magnetic field in a finite regiaon in a dircction
different from the vacuum direction one will turn the vacuum dircc-
tion inside this region; the energy of the partially changed vacuum
is only diffecrent from zero around the boundary of that regian. For
long range interactions, the cnorgy increases with a larger power of
the volume. This difference in the encrgy balance is responsible for
the fact that a short-range ferromagnetic responds to an e¢xternal agent
by an alignment, whercas the leng range forromagnetic is inert te such

agents. This picture was known to Swicca for a long time, who pointed
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out to me the relevance of Haag's work’'" . Later on, Kogut and Suss-
kind " introduced the very appropriate nomenclature of 'vacuum sei-

zing" for the chiral properties of a Schwinger-Higgs vacuum,

In order Lo obtain a better understanding of those dynamical
features whlch are not an artifact of the soluble massless QEDz, Swieca
began to familiarize himself around 1977 with the euclidean functiocnal
techniques since they censtituted the only known systematic way to re-
late Lagrangians wilth correlaction functions. By that time, it was
already understood that QCD has a O-angle which enters through topalo-

gical properties of the euclidean functional intcgral.

Here, the basic observation was that there exists an ambi-
guity in the quantizaticoen of classical Lagrangians by Feynmann-Wienes
path integrals. For example, in QCD the pseudo-scalar density FF has

a representation {we use the SU{(¥) matrix formallism)

vﬁ”" Y L
u U (24)

2 tr EMVKA[A 3 A
voK

FF:; = tr F

2
A 3 AAAD

Hence, this density, added to the classical Lagrangian,

Ly = L% + grF (25)
will not change the classical Euler-Lagrange equaticn, although it may
lead to a 8-dependent correlation function via euclidean functional

- TL;T S FF A 0 turns out to
6

be relevant. In that case, one would like toe interpret the contribu-

integrals if the configuration with g

n

tion of one '"winding number'' g

- - -JL d%=x
| ) 0
J'.dAUJq ¢ ' (26)

as a tunelling amplitude between two vacua

£q

ri'-n-q “ (27)

(n'in)
The 2-vacuum is then defined as

F TR (28)
n



which leads ro an interpretation of the functional integral as

i -
<a'lsx  §(8'-0) ; [d/iul (29)

Historically, the O-vacuum structure of non-abelian gauge theories was
first cxposed in the temporal gauge where there exists cnough ¢ gauge
frecdom to interpret the Au's, with a fixed winding number ( instan-
tons}, as an interpolatinq‘configuration between topologically inequi-
valent classical m-vacua., These arguments do not hold In other gauges
(viz, the Coulamb gauge with a “strong' boundary condition) and in
theories without gauge fields i.e. the two-dimensienal nonlinear ¢(3)

Sigma model,

Generalizing from the quantization ambiguity of a quantum

L

mechanical particle on a circle , Swieca and Rothe found an in-

~

trinsic way of introducing G-vacua

In Quantum Mechanics, with a simply connected cenfigurati-
on space, the validity of J. ven Neumann's unigueness theorem assu-
res that therce is no quantization ambiguity. If one were to change

the standard representation by writing:

D: - =t e + Ai(Q) ' (3¢)

with
d 4. =~ LA, - 0,
i (2
then the gauge transformation ¢, with A. = 3,4, lecads precisely to

the unitary cquivalence with the standard realization. In a multiple
connected space, the formal application of such a transformation ieads
te a multiple-valued wave function:

C-i@(qL

v ' ig) big) . (31)

This happens, for cxample, for a particie on a circle, where 4 --0/2w

leads to

[5}

In passing, we mention that by slightly generalizing the formula [30),

in order to include "nontrivial bundles' with transition functions,
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one can show that the most general canonical system on non- simply

connected spaces (s equivalent to this ''gauge" form,

In QFT, this constructien has an analogque. An Important
class of quantization ambiguities is obtained via the existence of
g topological density. In its most general form, a topoelogical den-
sity @{x) is a (pscudo) scalar composite field whose integral on eu-
ciidean space does not change under an infinitesimal variation in the
manifold of field configurations. A more convenient mathematical de-

finition is the language of differential (d+1) form, where d+1 is the

dimension of space-time.

There are many physically relevant topolegical densities,
in addition to the density (2b4) appearing as the axial anomaly of a
Dirac equatfon, there arc the Pontryagin, Euler and Hirzebruch den-
sities of cuclidcan General Relativity and the topelogical densi

Let {3(x)} be the physical

T

ties of the various Sigma-models
configuration space at one time,e,g. in gauge theorics the ciass of
all gauge field configurations which are equivalent under (nonsingu-
Yar) gauge transformations ol one time. Then, an “angular variable V
may be defined via the cxpression:

-»

$(x)

g [#]=2n dr giz) (32)
&@=0

#ith the integral being carried out along a path connecting the two
fieltd coenfigurations with the time variable parametrizing the path.

This variable docs not depend an the details of the path: under a
infinitesimal variatfon it does not change. For paths which can be
sontinuously transformed into each other, ¢ has the same value. In

sarticular, for a closed path {assuming fall-off propertics at spatial

infiaity) which is traversed in a finitc time, the intugral turns
>ut to be a2 multiple of 27, if § hos been appropriately narmalized,
The case of an infinite time interval will be considered as a  limi-

ting case. Without such a boundary condition, one may cncounter si-

tuations In which /27 has a fractional 'quantization',

In analogy with the quaantum mechanical case, one finds the

juantization ambiquity:

- ! 3 ﬁ?[ﬁﬁ
mix) - -% 5 .48 =

S (X)) 21 ani%)

’ (33)



resulting from a Lagrangian

i[6.8] = 1,(88) ¢ o= S ale] . {34)

i

with the corresponding action:
S - 5, + 8 J dx g(=) . (35)

There is a crctain similarity with the quantum mechanical
Aharonov-Bohm c¢ffrct; there, ©® has the meaning of a magnetic flux,
while here 8 measures a “"magnetic nyper-flux' through a {topological)

hole in configuration space.

Note that q[¢] depends on certain topoloqgical aspects of the

history of the path, not just on ¢(%).

It is convenient to usec a parametrization of configuration space, say
8 + A4 whose ¢g-values.can be associated with values of the A-field col
figurations. This process of "unwinding' the configuration space wil
then permit an interpretation of ncon-trivial topological path configu-
rations e.g. semiclassical instantons as links betwecn ineguivalen

classical dA-vacua.

This picture, which is usually enforced by imposing a tempo:
ral gauge condition, will then emerge in a completely intrinsic, gaug:
invariant fashion. An illustraticn of this was given by H,Rothe an

Swieca for the standard formulation of the ¢(3) Sigma model "%,

From this interprctation of 8 as a guantization ambiguity i
should be expected that & has quite different rencrmalization proper:
ties than ordinary Lagrangian parameters i.e. coupling constants, Wi

will return to this point.

The problem of integral versus fractional winding numbers i
a dynamical one., For pure non-abeclian gauge configurations without th
presence of matter , Marino and Swicca gave convincing a|rg1.:munt5?rJ
albeit not a proof, that the spectrum of winding numbers allowed by tt
finitencss of the action has only integral values. With matter j.e. fc
the induced acticon, their aorquments brecak down, and as we will sce la

ter on, onc encoeunters examples of non-integral winding numbers.,



lt is quite instructive to understand QED2 and its generali
zations within the cuclidean functional integration. We have set up th
necessary formalism already at the beginning of this section; the only

missing piece in the induced action is the topological ceontribution:
=l - z
3 F d
Ly J RRTRERRIIY x

This time, of course, we will not throw away the zero-mode contribution
in the determinant and in the Green's functions. The induced action has

now the form (for a quantity carrying a well defined chirality):

o oA

"indLA1J - Sy + m* { 4% + zero mode contrib.
1

+ 7 %J'r1jvc11\j+r'ind("'""':“"" o (36}
where rind is the contribution of the cxternal field dependence zero
-modes and modified Green's functions. This formula results from a
straightforward application of the Grassmann fermion integration ru-
les by incorporating the effect of zero modes which brings about a
derivation from the Mathews-Salam formula (11). A close examination *°

which will not be carrivd out here, reveals that the zero-mode con
tribution in F;nd and of the determinant compensate each other, thus
lcaving a Gaussian integration over A“ which, for the gauge invariant
quantitics , gives precisely the same result as the 'reduced vacuum for

N n . .
malism of Lowenstein and Swieca. c.qg.

T T L R O B L P (37

This modul therefore shows a Higgs-Schwinger mechanism «: cniral symme-
try breaking: the photon acquires a mass, as pointed out by Schwinger,
and the vacuum expectation values of chiral symmetry carrying opera-
tors as {21} are different from zerc as a result of the Atiyah-Singer
-'t Hooft zero modes. liowever, the model is too unrealistic in order
to shine any light aon the real “chiral (1) problem” as encounteread
in QCD. A wtwo-dimensional model, which in cuertain aspects is somewhat
close to QCD (asymptotic freedom, mass-transmutation, nontrivial topo
logical gauge classes) has been proposed and studied by K. Rothe and
Swieca i . lts Lagrangian is obtainced by combining that of the Gross

-Neveu four-fermion coupiing with QEDZ.
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-l g Tiae B M wae S (T2 4+ (Tiviw)?]-te® )
L FoEE +(za+mﬁ)v+ - [wu)? + (Tiviy)?) NV RTERTATS
(38)
The fermions arc taken to belong to the fundamental 0v)

representation and the factors 1/¥7 and 1/# have becn introducced for

later convenience. In contrast to QCDQ, the medel is not SV (") chi-.
rally invariant but only exhibits @(1) chiral symmetry. In fact, the
only four - fermion interaction in 2 which is sU (V)=chirally inva-

riant s the Thirring interaction which, unfortunately, docs not lead

to a mass transmutation.

A careful investigation of the pure Gross-Neveu model car-

ried out by Keberle, Kurak and Swieca has shown * !

1.) The Gross-Neveu fields split into a noninteracting “infraparti-
cle" factor carrying the U(1) x U(1) charge and a massive SU(v) field

y with exotic statistics:

T r
velzl = exp 7, TT. {(y*elx) + j il ) we o,
<X

{39a)
- )
bom - A"
Y PG ,
z
, 5 z - 2
: w aSEwy? (/5 . o 5 4 .
Ve ',/zﬂ @ er!1/2 } At ¥ie  (z) +
{ Z -
b
( 2
* £3,¢ D(azog) s
T i
%.QADYtlzLE ave 7 (39b)
u 2 uv
¥
) . .
where X = diagonal A-matrices.
2.) The éf-field interpolates a known factorizing S-matrix. The

resulting unusual particle statistics (which may be rewritten interms
of ordinary statistics) is helpful in order te understand the bound-
“state structurc: the antiparticle is a bound state of &-1 particles

thus examplifying the S0 (X} (instead of U(N)} invariance.

The spontaneous mass generation in the Gress-Neveu mode



s, as expected, accompaniced by the appearance of zero mass exclita=
tions. This is reminiscent of the Nambu-Goldstone mechanism. But as
we have seen in our general discussion of Scction !, it docs not lead
to a spontaneous symmetry breaking, Zero-mode excitations in two di-
mensions only arise from exponentials of zero mass fields and these
infraparticle factors, far from destroying the U{1) = #(1) invarian-

ce, actually carry the corresponding selection rules,

what happens now if the AU gets coupled to the V(1) part
of the model? The '"bosonization'" formula (39) suggests that the La-

grangian has the form:

Eolyay * Tsun (ho)
L I e U v _ite B -
LU(I) 5 Tl + oz 3“¢BU¢ + v i uva & T  Suvfuv (41a)
. . £ :
z [ 2 7 . 2
s R N N N a_ X : ) 2
bawisy = 3 T au¢ au; + % {[% cos Y27 2 e¢ ¥
2
D
o, o ta)t
+ L sin Y21 %X i . (41b)
lf i ff J
n
As cxpected, the Higgs-Schwinger mechanism leads to a plas-
mon and the chirality will be broken., Ceonsider as an example the oneg

-point function of the chirality I, operator:

Lpp, LYty . (42)

The functional representation, after integration over the ¢-fields yield

by { r T i
<g|l, {x)|8> = -11.(1,»),\‘:‘\ : (da_ s ind (43}
+ ¥ w
- vl e 1T af a0 , e A @ Y g7
fing " | Fuvd a + zm ) Afdim = i D(r—u}auvbuu{u)d E
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The functional integral for the first Gross-Neveu factor involwves non

3.

polynamial interaction terms in ¢ D they can be expanded in powers

of 1/¥. For our purposes, we only consider the second ¥(1) factar.The
"saturating' field configuration in terms of which the remaining inte

gration can be explicitlyperformed

PIREREC N LIS T I 0) - bz, e (45)
i’ AR EN

carries fractional winding number 1/%,

1 e e .
97 Ty ;E J SITIVRRTICH (h6)

and its contribution to the functional integral canwnct be developed
in powers of 1/%, Using the well-known relation between the chirali

ty transfer of operators {in our case 1,) and the winding number g:
bg, = I9d, {47)

we see that this fractional winding number is in perfect agreesment

with &G, =2 of the operators (42).

This result was obtained from "bosonization', whose deeper
relation. to the order - disorder concepts of statistical mechanics

will be explained later on.

53 . . . . .
OQur attempt to understand this fractional winding with
the use of the Dirac equation via the Atiyah-Singer-'t Hooft mecha-

nism has failed. In that formalism the lowest non-vanishing composi-

te expectation value is the flavor - determinant:
- 1+ 2
- de : T
det P 7 P £ 0, (48)
fof0

thus indicating chiral breaking. This approach based on the compactj
fication R* = RZ, although not illegitimate, yviclds vacuum expecta-
tion values of Ii's which violate the cluster properties. The expec
tation values in the irreducible B-representation can then be deter-

mined using the operator formalism of Lowenstein-Swiecca.

a1
We tried and failed to understand fractional winding
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numbers as the result of the Atiyah-Singer-'t Hooft mechanism aon so-
me Riemann surface as a covering space for {non cancnical) fermions,
and hence we became convinced that "bosonization' is essential for

fractional winding.

There is another interesting message in eq. (L3): the 1/¥
expansion is only reasonable in those pieces of the correlation func
tion which do not carry topology e.g. one obtains a misleading picty

re if one decomposes the second factor in [43) as a 1/% scries ex-

pansion.

Now | would like to comment on the J(1) problem in QEDh.
Although in principle the Geldstone mechanism for the chiral U{1)
part fails as a result of the axial anomaly and hence there exists
ne reason to expect " a ninth Nambu-Goldstone boson {say, in case

of SU(})F), it is another matter to really pinpoint the detailed dy-
namical meckanism yielding a '"'n - plasmon' ** . As in the oprevious
model, the plasmon cannot be understood without the rather subtle in
frared properties, and one expects in QCDh a dynamics leading ta a
massive n to be inexorably linked with the Nambu-Goldstonc infrared
mechanism yielding massless chirai mesons. The importance of '"boeseni
zation" in the model case, together with the observation that "boso-
nization'" is part of a more¢ fundamental order - disorder duality sche-
me, nourishes the hope that a dual variable formalism incorporating
spinor fields in addition to gauge fields should be the necessary
ingredicnts for a QD Higqgs - Schwinger mechanism including nonva-
nishing expectation values of 5@ and @T5$. Since we have nothing
concrete to offer on this point, we contentl ourselves with some con-
sistency considerations a la Crewther*" which, as the recader will

realize, deviate in content somewhat from those of Crewther,
The standard direction of SU(V) chiral symmetry breakingis:
+ LB/
< . Vo ar - O '/ ... (L9}

Consider first the g-dependence, The more general statemant referring
to the addition of an arbitrary Ji{¥) x 3U(%) breaking dircctiaon in
the Lagrangian, with a coupling constant that govs to zero, would
yield an arbitrary SE{V) matrix V instead aof 6ij , which by going in
to an adjusted SU(H) x SU{¥) frame, can always Lc chosen as in (49).
The direction in (1) x #{1) however cannot be adjusted by an vxter-

nal agent because is rigid i.v. the O-vacuum is “scized'", The depen-
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dence of (49) on €& is the same as in the corresponding Rothe-Swieca

mode) for the same reasons, namely, the validity of eq. (47). Howe-
ver, in contrast to that model in which the fractional winding led
to the enhanced O-period 2m¥, the effective B-period in QCD, suffers
a reduction as a result of the chiral Zn facter in the Nambu~Goldsto
ne SU(%) chiral invariance. In other words, if we add a Lagrangian
mass-term to this model, the physical observables e.g. the 8- depen-
dent vacuum energy will show a saw-tooth behavier with period 27, as
a consequence of the instablility of the Nambu-Goldstone vacuum at

chiral angles which correspend to the values of the Zn center, The-

fore, the rigid part of the group is:
v xowly/z o, {50)

and not £{1) » &{1). To put 7t in yet another way: a Lagrangian guark
-mass term (whose physical ortgin liecs outside QCD) will not influen-
ce the p{1) chiral direction of the transmuted QCD mass, as a conse-
guence of the U{1) x U(I)/ZH "vacuum seizure', The relative angle,
between the external mass dircection and the transmuted one, bccaomes a
physically relevant quantity. Thus, in a model in which all quarks ha
ve a Lagrangian mass, the situation is wvery different from the massles
case. It is impessible to find a chirally reotated interpolating field
in terms of which the expectation value takes the standard form with
Ge0. However, one may convert, say, the n-angle characterizing the
{1} x U(1}) direction of the added mass-term, into the 8-angle by mul

tiplying the topolegical charge density, A rigorous argument is based

on the Atiyah-Singer-'t Hooft framework of the '"compactified" Cirac
equation (Section 2), with an additional ({1} x U(1} mass term. One
first derives the anomaly equation, using the Schwinger variational
calculus fer {Pauli-Villars = { function) determinants 1 , The chi-
ral transformation which brings the mass term into the normal form

will not change the action but only the functignal measurce:

nodny de, dn: dgz

chiral f{m-nla | ,
@ X same measurc

transformation

Here, the first product contains Grassmann variables for the chirally

symmetric modes (¥ - Lagrangian mass):
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Ti 1&%: b bk s - )k + LM,
I D (0) .

Ek P P Ak ¥ #k , Ak - Ak A

which always occur in pairs and a% a result of the cuclidian form of

the chiral transformation (non unitary!):

. « . . 5
Ty, Lt T Tray
\I;‘, NG o A '):( = P 3
yields a trivial transformation determinant for cach & in ', The
: L0 .
Grassmann measure corresponding to A, ) 0 = A, ¢ ¢ does not shown
¥

this symmetry. |f m is the number of chirality 2+]) zere modes and »
that of chirality {-1} zero modces, the resulting phasce factor, [
preciscly the winding of the Au configuration and obviously may be
absorbed into the topolegical term of the action., There e a4 formal
argument in this manncr due to Fujikawa. For the reasan discussed at
the beginning of this Section®’ , we disagree from the formal aspect
of the remedy proposed by the author, who imagines some kind of  0i-
righlet boundary condition. The Fujikawa recasoming is plainly incor-

rect in two-dimcnsional gauge wmedels and in a morc subtle way In QCDh.

The impossibility of rotating away the J-angle, in a massi

ve theory, raiscs the specter of "strong'! CP wiolations., In this con-

text, Swicca discussed with me the work of Shifman, Vainshtein and
£

Zakharov . Thesce autors showed that {a) The renormalized value

of 0O can always be adjusted to zcro by choosing Pauli-Villars guark

regulators whose mass-direction in chiral space is suitable adjustoed,
(b} With the help of a rcal (non-ghost} quark of a very large mass .,
which is the only quark coupled to a Higgs' "Axion', one can achiuvve
6=0 at the expense of arbitrarily small physical effects in the ob-

scrvable encrgy region.,

The first claim above, appears at first sight confusing.
Here, one should remember that onc nceds (as with any Lagrangian pa-
rameter) a clear-cut definition of the renormalized U-paramcter in
terms of the unrotated P-fields, The appropriate definition is (sco

eq.h9):

U s Ppy Te_g 7 Coexp(-E0/E)S . (51)

o

resembling the definition of renormalized paramcrers in the "sliding

mass' renormalization scheme. The original 9 appcaring in the Lagran
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gian is physically meaningless; it is only the combination with Lhe
angle characterizing the Pauli-Villars regularization which enters
the normalization condition, The angle characterizing the physical
mass may be freety transferred to O by working with chirally rotatcd
fields according to the previous argument . Hence, the C-angleand the
amount of CF-vioclation, in thecories with an external Lagrangian mass
-term, is "incalculable". Scveral ycars ago, Peccei and Quinn'”®
proposed a model in which there is a natural (F-consarvation, provi-
ded one pays the price of introducing a phenomenological Higgs ficld,
In view of 't Hooft's discussion on "naturality" '77 | these phenome
nological values are not an agrecable starting point for studying a
fundamental problem such as that of a strong CF-vielation. In accor-
dance with the prescent day trend, one should rather study massless QCD
like {including axial gauge ficlds) theories with purhaps more com-
plicated fundamental multiplets than in QCD e Lolt is clear that
in such thcories the overall 0 can be transformed away, Whether ap-
proximate 0's, belonging to topological densitiecs involving gauge sub-
groups, have a meaning, scems to be doubtful unless they can be rela
ted to gauge invariant condensates,. This is a difficult problem which

merits a deep theoretical analysis.

On scveral occasions, Andr¢ discussed with me about the
feasibility of 1/ expansions, in particular Witten's idecas'’' . Ge
neraiizing from the experience with the Rothe ~Swieca mode), one would
expect that only the non-topological part of functional integrals is
expandable in 1/%, Therc is also the difficulty of understanding the
picture of bound states in 1/&, Not cven in models whose /3 syste-
matics in much easier than that of QCD {and can be obtained in terms
of a finite number of Fcynman diagrams in each order) as for examplc
the CP"-model, it is sufficiently well-known which threshold proper-

ties, in lowecst nontrivial order, should be taken as an indication
+ .

for the emergence of a bound state .
Putting aside the U{1) problem and the 1/% cxpansion, I
now would like to comment on model studies of '"screening versus con-
, 12 S .
finemenct" . In order to have a clear-cut distinction on the le-

vel of physical states, I take the following definition of confine-
ment. Consider a Lagrangian gauge theory with a '"gauged" guark spi-
nor field % which has in addition a SU(H)F flavor index in the funda

mental representation, So we exclude other possible matter ficlds,
such as Higgs fields.
Cef.: Quarks are said to be confined if the physical state-space does

not contain states in the fundamental SL(H)F represcntation,



An important ingredient for the above mechanism of physi-
cal confinement, according to Wilson 7 is the so-called static
quark confinement. In a purec gauge theory, without matter, one stu-

diecs the expectation value of the path ordered loop-operator:

<p cxp[§ Ai?\i dz¥}> = ¢ oexp[-r ()] . (52)
If one chooses a rectangular loop of height T , with I+=, and width
L, the V(L) defined by the right-hand side can be shown to have the

meaning of an intcraction encrgy between two external gg seurces with

a mutual distance L, The desired "static confinement' behavior is,
for L=,
e . .
L) = ab + Q(L7), a = string tension 4 Q@ , (53)
where a < 1,
Recent studies in nonabelian lattice gauge theories, in-
cluding numerical Monte Carlo calculations, have led physicists to

believe that the string tension is non-vanishing in the total range

of the lattice coupling constant®™' , An analytic proof has naot up
§ .

. f al
to now been given, although recent works of 't Hooft " and Mack

give the impression that one has come very close to & proof of eq.(53).

Investigations of the physical confincment problem in  the
prescnce of matter are much more difficult; in particular the effect]
ve potential becomes a less useful theorctical concept since V(L}, as
a result of qa fluctuations, always flattens out asymptotically., With
the exception of a four-dimensional "’ lattice gauge model , the on-
ly medels in which the physical confinement problem has becen wunders-
tood reasonably well are two-dimensicral continuous gauge theories '’
It has been often stated that the cenfinement in twe-dimensional gau-
ge models is an automatic consequence of the increasing Coulomb poten
tial. This is certainly true for static quark confinement, In the QFT
including spinor = guarks, only the color - charge neutrality is au-
tomatic in two dimensiens., The investigations of "scrcening versus con-
finement'" are subtle. They have been carried out within the last years

notably by Swieca and collaborators.

93
I will ecxplain now some of the results in a QED2 " mode 1
with S5U{¥) flavers. The only gauge invariant polynomials in ¥, in a

U{1}) color model, are generated by 'meson ficlds':
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R (54)

Hence, accerding to the stancdard canfinement picture, we expect only

"mesons' in the trivial and adjoint SU(&) representations.

With zerc Lagrangian quark mass, one can easily exhibit gau
ge ‘nvariant operators which carry the fundamental representation,.For
their construction one uses bosonization which, as we will show la-
ter on, is a speclal case of the order - disorder duality, These ope
rators are certainly not pelynomial in the original {'s., Applied to

' states transforming according

the vacuum they create "“infraparticle
to the fundamental representation of SU(N) ., With a finite Lagrangian
quark mass the situation changes drastically: these states carry an
infinite energy and are confined. In fact, for the D-vacuum with 0=0,
one can show that there are only states which transform as SNy / Zn
tensors, Lhoosing a CP-invariant vacuum, with 8=1/%, ane can cons-
truct gauge invariant operators which carry the fundamental represen
tation, These operators are not local; on the contrary, they have
commutation relations similar to the dual algebra. This has the ef-
fect that the usual arguments, leading to two-particle scattering sta-
tes transforming as S0(#) = Su¢(¥y), do fail, They rather transform as
slRY x suly) or su{¥) x SU{¥y , according to whether the first par-
ticle moves slower or faster than the second one. Those particle sta

tes arc the quantum field theorctical version of Loleman's guasi=-clas

. ) In
sical "half-asymptotic states' .

Accepting the argument on '"kinematical non-abelian celor screening',
discussea in the first part of this article, there con be no physi-
ca)l states carrying nen-abelian color, However, as the discussion on
the two-dimensional model has shown, this does not necessarily mean
guark cenfinement., What could happen is that some gauge invariant
(non-palynomial) topological degrees of frecdom carry the fundamen-
tal flavoer. In non-gauge theories, onc has examples, viz. the o)
Gross-Neveu model ' | in which the fundamental Spin {(¥) group ma-
kes its appearance through kinks, even though the local physical fields
only carry the ¢(#) representation!”® | Proving quark confinement
means, in particular, excluding such a rearrangement of fundamental

flayvor as being "hooked' on topological objects appearing in the theo

ry.

In pure non-abelian semisimple gauge models, without Higgs

fields, it scvems to be very difficult to obtain ordimary clectromag
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netism. A gauge-invariant condensate 0%% in the J's, which lcads

to a candidate for an electromagnetic ficld Eﬁv o , scems to have,
unfortunately, a local gaugc-invariant Au alse, thus preventing the
emergence of charge sectors, The simplest illustration of this dif-
ficulty is an 5U{Z) gauge theory without Higgs ficelds, The condensa

te (@Aav)z will not only lecad to PUS

- -
- 'l = ;
YA but also to Au ] DU E

which is local and gauge invariant,

There s one more interesting observation concerning the
nature of quark cperaters in the confining massive QEDZ-model. The
quark propagator is a relativistic gauge e.g. the Schwinger gauge
is an extremely i1l defined object which increcases cxponentially in

z-space. For cuclidecan distances, we have '"

(=) 2(g)> - Aexp(7 e 1084707,

where ¥ 15 the quark mass, This disastrous infrared-behavior prevents
the use of momentum-space and dispersion theory for quark propaga-
tors and more generally non-gauge-invariant cerrelation functions of
quark ficlds. The infrared behavior of the gluon propagators is,
on the other hand, much more deccent; it just contains a Zere=mass
pole which is not related to any physicatl particle and which thare-
fore has been called the 'sccret long-range-force'. The cxponen=
tial incrcasing guark propagator is related to the secret long-ran-
ge-force behavior via the Schwinger-Dyson intcgral equations. In
QCDQ, one would e¢xpect such an cxponential behavior to be relatedto
a zero mass double pole Il(pz)? in the gluon propagator, Swicca's
opinfon about these obscrvations was that, although physically non-
-—cxisting fields as isolated confining quark fields should be expec
ted to have very 111 defined mathamatical properties, one ought

to avoid to base a confinemeat philosephy on unphysical gquantitics,

The remaining topic to be discussed is the functional in-
teqgral approach to continuous order - disorder fields and kink ope-

rators. The rclevance of this duality structure for a classificati-

on of the different phases had been first recognized by Kadanof f
and Ceva'" , in their study of the two-dimensicnal Ising mode 1,
These authors demonstrated that the thermodynamic duality  of the
lsing model, observed decades agoe by Kramers and Wanmier * had

a microscopic basis which manifests itse)lf through the existence of
N . £ .
a local disarder - wvariable. Later, Handelstam , and in a more

explicit fashion 't Hooft '  and Mack'' ., exhibited dual variables
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in lattice gauge theory and, on a complectely formal level, alsc in
the continuous gauge theories ® |  As we will see, the mathenati-
cal aspects, in particutar the renormalization properties of disor-

der - variables are very subtle in the continuous QFT.

A comparatively simple Illustration of the continuum order
-diserder duality is the functional approach te the Mandelstam bo-
senization in the form discussed by Marino and Swieca’" . For sim-
plicity, we¢ start with a massless free - field , ¢, and define for-

mally the two component exponential operators:

G

o(x) zexp(-Lay s (), wlx) = cap(-0 | "o sda ) (),
=t (55)
Assuming for the moment the path independence of wand choo
sing the C-=path parallel to the spatial axis, we may compute the
equal-time dual algebra between © and 31 from the canonical commuta-

tion relations:

. N - 1_..1
Wz e bo (=gt ) o ofxt,y ) u(a?,xt) 2T Ol ) (56)

with & = ab/27.

If uw is a scalar field under L-transformatieoens (this will
be shown later on), this dual algebra has to be valid for space -
like distances as well. Fermally, the transfermation of o by w

produces a translation to the right of « :

;)

¢t b -
¢ (57)

This is the "half-space'" version of the global symmetry:

$r¢+b of the Lagrangian

1
D=y oabat . (58)

In addition te ¢ and W , we define conjugates;

G L A TR AL IR TR
with v = (0 l)



The euclidean correlation functions of o, ¢.9.

o ()i 0>« § | (48] exp (- 3 [ (0807 vt e telent 0],

(59)

have an obvious electrostatic interpretation: the saturating eucli-

dean configuration ¢C| which satisfies

2376 () = av®L . 8(s-z) 4 ay®, .8(z-x) ,  (60)
1 T

inserted into the induced action yiclds the electrostatic encrgy of
the two (imaginary) charges. The quadratic fluctuations, which are
independent of r and ¥ , as well as the electrostatic self cnergies
can be absorbed into the wave function renormalization factor, The

result has the form

<o{r)o{y)> = exp [- Estat(z'y)] (61}
where
a' i a’ ' I
) = - Y v* - - Ty
”stat(I'y) o Yny log |z-y | 75 109 (RII+YIY3|) {(62)
is the electrostatic interaction energy. The last term in eq. (623
originates from the Dirichlet boundary condition, ¢ (%) = 0. This term
yields, in the limit R»®, the well known-chiral sclection rule of the
Thirring modetl g, - wT&,, in Minkowski space:
€0,0,> = <01(6Y0)1> =0

For the correlation functions of u, e.qg.

Al)iily)> = = | [e] exp (- 3 ORI N 3
T 2) H
x,C

Ly3yedz)  (63)

we have to observe that the euclidean formalism gives & without a

factor ¢. The saturating coenfiguration:

Y
' 30 &(z-n)dn (64)

1
2245 (2) = B £ .3
J.r,C uvoy H
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describes electrical dipotes on a string C. The fleld line picture
is the same as that of the magnetic field generated by two Currents
flowing perpendicular to the z - plane and penetrating this plane at
x and y. For this reason, we will call the right-hand side of {6&4)
a magnetic moncpole configuration with a string C. Again, renormali-
zation is performed in the language of electro {(magneto) statics :
the mancpole self-energics as well as a string sclf-energy contribu-
tion will be absorbed into &, A simple calculatieon rceveals the vali-~

dity of the following statement.,

Statement: the rencormalized u=-correlation functions are independent
of C. The proef is based on the observation that a clo-
scd contour I

s - B cuv3v¢+b J guvava (65)
r

docs not centribute to the path integral, becausc it can be functio-

nally shifted away:
T bOS(z) , {66)

where Bs(m) is the characteristic function of the region enclosed by

Ir.

A morc carcful examination of the boundary contribution
shows that this shift leaves ne residual terms only afrer the string
self-cnergy factors have been absorbed into V. Note that the indepen
dence of the u-corrclation functions on the paths is a quantum pheno
menon;: it happens enly in functional integrals but not in the corres

ponding classical quantitics.

The really interesting objects in this model are the mixed

correlation functions c.g.

a b=, Be-. &

calz"YulzDoly Iulyg™)> . (67

In addition to the charge - charge and monopole - monopele interactions, there
will be now a charge - monopole intecraction in the exponent of the

correlation function,

As a consequence of this additional contribution, the mi-

xed euclidean corrclation functions will be multiple valued. The ma-
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nifold on which they live is not simply an euclidean space but ra-
ther a ramified covering with the positions of yu being the ramifica-
tion points., The number of sheets dcepends on § = gb/2Zn; if thls num-
ber is rational there will be a finite number of sheets, Everytime
the positions of the g's cross the ( cuts and return to their origi-
nal valucs,we rcach another sheet of the function, i.e., the situa-
tion is similar to the one in analytic function theory where classes
of topologically inequivalent paths give rise to the construction of
Riemann surfaces. The independence of the correlation functions on
the paths within one equivalence class leads to the scalar transfor-

mation property of p.

The multi-sheeted structurec of the euclidecan domain is a
manifestation of duality. Lacality, as is well known, leads toc wuni-
valent functions in the analyticity demain of gencral QFT *7, this
domain includes the euclidean points, Hence, the dual structure
transcends the Wightman = Osterwalder - Schrader'®’ framework. This

lack of univaluedness does not, of course, lcad to ambiguitics in the

definition of physical cperatars.

An intercsting feature appears If we were to introduce lo-

cal '"dyon" operators:

W (=) = o (z)ulz)

1,2 1,2
_ _ _ (68)
i (z) = ¢ Cedulz)

1,2 1,3

Each time a charge crosses a string before the equal point
limit is taken, we obtain a discontinuity of the form eiab. In other
words, there is a phase ambiguity in the definition of the cuclidean
dyon-correlation-functions. The physical boundary valucs of these
correlation functions are preciscly thosc of the masstess Thirring-

Klaiber model with!®!

a = %% (Lorentz) spin , (69a)
P
dim 4 = a*to ;D . {69b)

Only in the case of ordinary spin, 5 = , oene can relate

R |-

the * sign ambiguity with the order of cuclidean operators inside cor-
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relation functions., ¥for & # % , the phase ambiguity cannot by cast

into a lincar operator arrangcrent, i.¢. our costumary way of writing
operator products from left to right does not lcawany margin for ab

sorbing this ambiquity.

Collecting the main result, we may say that the products of

two~dimcnsional order and disorder operators lcad to spinors with
exotic statistics! ' 17 which have their origin in the topologicailly
ingquivalent path classes appearing in cuclidean functional inte-
gralst?7?.

In the case of a Sine-Gordon Lagrangian, instecad of (58)

the & weight in the definition of 1 must be reclated to the § in,

. [ 7 b 2
Lo 5 (nuv) + § cos Pe, (70)
by
Boos 3 (71}
only if eq.(71) is fulfilled, one obtains the path indepen
dence of p. 1t is interecsting to note that the finite energy require
ment for the Minkowski - space soliton states is equivalent to Uhe

path independence (or the covariant transformaltion propcrty) aof the

cuclidean formulation.

A rapid glance at QED2 reveals that the case of this dyon
formalism yields the corrclation functions in the unitary v7 - gauge

in a natural way:

: P Moy D
sylz) expl-ie Jroc d d”“) ola) “Schwinger (72)
r
A d4 [dy] ¢ exp (27T Ty7 s{e) + y2¢{y) - ¢ ¥ £ 5 pdaz )

+ J 4 . ¥ ¢ Ap [ ,Yr el Ey N i C_N“ NCAEEE
(73)

S= (7 d%, L=h () e b 7 e I8 e e ke LMY

! ' Z L T ‘pw FERRR A Z u'v

Performing first the Au integration, wc obtain a mass term
for the ¢ as a result of the coupling with AU. Using the language

which is dual to the previous terminoloqy, i.c., calling ¢ a monopole
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potential and F,, a magnetic ﬂcld,thcéuintcgration produces a magne-
tic plasma. As a result the chiral selecction rule (monopole - char-
gc sclection rule) is lost and the vacuum can be regarded as a  chi-
ral condensate, The C - integral now represents a tube of elecuric
flux and different C paths are now no longer cguivalent. This pictu-
re is very similar to Mandelstam's ”’ scenarioc of four-dimensional con-

finement.

The cuclidean functional represcentation for disorder va-
riables and topological kinks, which arc related to a tagrangian pos
sessing a multiplicative symmetry c.g. the @Z theory in the broken
symmetry phasc or Z”—modc]s in two-dimensional space-time, posc a
more subtle problem than the Mandclstam bosonization related to an
additive symmetlry. AU this point it is helpful to remind the reader
that kinks and topological solitans entered QFT at the beginning  of
the 70's. These new objects were first studied in classical nonlinear
field theories and then incorporated inte QFT with the help of the
guasi-classical npproachlza. Unless the classical model has peculiar
conservation laws (infinitely many higher conserved currents, inte-
grable systems) which then stabilize objects against guantum fluctua
tions (viz. the exactness of the quasi-classical speéctrum in the H-
-atom) or unless topology (homotopy oroperties) assumes the stabili-

zing role, there is no reason to believe that a quasi-classical ap-

proximation has anything to do with the truc structure of QFT.

In topological kink situations, as thc ones mentioned abo-
ve, the guasi-classical approach aims at the construction of wparti-
cle-states helonging to new '"sectors', differing by new quantum num-

bers from the vacuum sector. The systematic mathematical version ma-

kes usc of the method of '"collective coordinates'", widely applied in
Nuclear Physics. This method, however, is at odds with the spirit
of QFT, where one would like to construct "interpolating ficlds', and
delegating the particle aspects to the LSZ treatment of the asympto-
tic behavior of thesc fields. These new fields turn cut to be "dual!
to the original Lagrangian fields., Thus, the problem of incorporating
kink operators into QFT becomes a part of the construction of the
order-disorder algebra of Kadanoff and t'Hooft. Whether kink-parti-
cles really exist or not, turns then Into the problem of the existen
ce of broken symmetry phases. The dual algebra ¢.g. for two-dimensio

nal Z.,-models recads:
P
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where 0{(z) is the Heaviside step functicn, A formal canonical attempt

to construct these objects would consist in writing

@

- i uy oot .
u(z) exp (7 L . £ (3,4 & av¢) d”u)

This last cxpression is, strictly speaking, wrong because it leads

to a path dependence, and hence te a non-Lorentz-covariant object.

It contains, however, a grain of truth, The correct expression turns
out to be e.g. for the euclidean two-point function, the following
one:

sulzduly)> = w (d¢] @¢fq exp{-/ L (A:) d?z )

with

being a string potential,

So the mathematical problem is that of a matter field in a Bohm-Aha-
ranov'?? flux at x and ¥. 1t was rather a surprize to us that a theo
ry of kinks which has nothing to do with a gauge theory, on the le-
vel of its euclidean functicnal integrals, turns into a pecuiiar
gauge thecory. f't became clear to us that this result is in complote
!

harmony with the statistical mechanics of Kadanoff and 't Hooft, who

propose to add a term to the usual action in crder to generate a "Di-

rac phase rule' for ¢-crossing of (fictitious) strings. The mixed
euclidean Green's functions of ¢ with u are then functions living on
a ramified covering of R? rather than on R? itself. This property

is responsible for the duality structure of the corresponding Wightman
functions., In the physical Minkowski region there is, as in the opre-
vious case of Mandelstam's bosonization, no ramification ambigquity,
and therefore the physical operators remain uniguely defined cobjects

in a conventional Hilbert space.

We have first applied the Bohm-Aharonovy gauge formalism te

a very simple casc: the construction of disorder variablics associated
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«ith free massive complex scalar or Dirac-fields. In such a case, we
have found an alternative tao the (difficult) calculation of funcrtio-
nal determinants of matter fields in Bohm-Aharonov fluxes. The corre-

lation function e.g.

A0 3 e (y

: ETa cer ¢(;i)¢*(yi)>4 s

7
U

are simply sums over products of Wick contractions of the basic Green's

functions, and

wl@e s s = o et
A
u

where ¢ is an x, y independent factor originating from the functional
determinant. Normalizing y appropriately, one may set =1, The two
-point function in a Bohm-Aharonov flux may be constructed from the
eigenfunctions ("eigensections", in the terminology of Fiber Bundle

theary).

The use of a particular gauge, the so-called vortex gauge,
turns out to be conveniunt, The result may be analytically continued
to the physical points and yields the kernels of the p-operator in the
form

u = exp bilinear {(a, @', b, b

with @ and b appearing in

() } (ﬁ—fpx alp) + pipxb+(p)) %%

3

The kernels arc known from the work of Lehmann and Stehr!??, Sato,

2

12%  and that of Weisz, Schroer and Truong'’'?.

Miwa and Jimbo

A very peculiar situation occurs if one tries to construct
Z,-disorder variables p, for a real massive bosen field, respective-
ly a Majorana fermion field. In that case, the AHS— language simply
does not exist, because there is no minimal electromagnetic coupling.
The functional intecgrals turn out to be those in 8ohm-Aharcnov flu-
wes, related to a nontrivial (i.c. non-trivializable) real wvector

bundle with a basc space of R* from which the penetration points of
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those fluxes have becn removed. Mathematically, this model has a
Hobius structure: a "flat" (i.e, no field strength) nontrivial real
vectar bundle, Such functional integrals illustrate a situation as
envisaged by Wu and Yang'*'. The main difference of this cxample,

as apposed to theirs, is that therc is no alternative formulation in
terms of Dirac strings. In addition, it 15 a "natural' moede!, namely
the Lenz-Ilsing field theory, which was certainly not invented in order
to illustrate this peculiar mathematical point, The dual order o-wva-
riable in this model, which previously was constructed via a Wilson
short distance limit of the Majorana field with u, may by dircctly
constructed in terms of non-trivial %, Bohm-fharonov fluxces, formally

corresponding to axial (i.e. involving 75) vector potentials.

The method of ''doubling'', by which Truong and I constructed
the Lenz-lsing ficld theorctical correlation functions, finds its na
tural setting in this formalism; one just passes from the real vec-

tor-bundle to a2 complex cene, to which the language of Bohm- Aharonowv

fluxes with their strinas and the Mandelstam bosonization becomes
applicable. In the case of zero-mass spinor filelds, on¢ can compute
directly the determinants of u-and c-correlation functions. This is

even possible for o multicomponent spinor field, say with ¢{x) 5ym-
metry, which allows us to introducce neon-abelian o's and pu's. The
formalism is a special case of fermion determinants in two-dimensio-

nal non-abelian gauge fields'®", and there are interesting relations

to the work of Sato #t a/.'"  an the connection of the Riemann- Hil-
bert problem with QFT. The reader may find more details on the pro-
Eiems discusscd in this Section, in the last paper of Swiuvca and

collaborators {Ref.103).

In the scientific work of Jorge André Swieca, the reader
will find the simplicity of his style, and a potentiality for future
developments., I hope that by writing this '"guide' | have helped to

expose the contemporary relevance of his work.
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